Una pila de combustible de hidrógeno utiliza la energía química del energético en un proceso que, al contar con productos y subproductos como la electricidad, el calor y el agua, genera energía libre de emisiones de CO2..
Las pilas de combustible de hidrógeno ofrecen una gran variedad de aplicaciones, desde el transporte hasta la alimentación de emergencia, y pueden suministrar energía a sistemas tan grandes como una central eléctrica, o tan pequeños como una computadora portátil.
Además, aportan ventajas sobre las tecnologías tradicionales basadas en la combustión, como una mayor eficiencia y menores emisiones. Las pilas de combustible de hidrógeno solo emiten agua, no expulsan dióxido de carbono ni otros contaminantes a la atmósfera.
Y no podemos olvidar que también son silenciosas durante su funcionamiento, ya que tienen menos piezas móviles que las tecnologías de combustión.
Primero lo primero
Los vehículos de pila de combustible de hidrógeno son impulsados por un motor eléctrico y, por tanto, se clasifican como vehículos eléctricos, cuya abreviatura común es FCEV, de «Fuel Cell Electric Vehicle», en contraste con un BEV o «Battery Electric Vehicle».
Hay una diferencia crucial entre los vehículos de pila de combustible de hidrógeno y otros vehículos eléctricos: los de hidrógeno producen la electricidad por sí mismos, por lo que a diferencia de los que son totalmente eléctricos e híbridos enchufables, no obtiene su energía de una batería incorporada que puede cargarse a una fuente de energía externa.
Los vehículos de pila de combustible de hidrógeno tienen su propia planta de energía eficiente a bordo: la pila de combustible. En ella, el hidrógeno y el oxígeno generan energía eléctrica, que se dirige al motor eléctrico y/o a la batería, según sea necesario.
Funcionamiento interno
En la pila de combustible de un FCEV tiene lugar un proceso conocido como electrólisis inversa, en el que el hidrógeno reacciona con el oxígeno en la pila de combustible. El hidrógeno procede de uno o varios depósitos integrados en el FCEV, mientras que el oxígeno procede del aire ambiente.
Los únicos resultados de esta reacción son la energía eléctrica, el calor y el agua, que se emite por el tubo de escape en forma de vapor de agua. Por tanto, los automóviles impulsados por hidrógeno no emiten emisiones a nivel local.
La electricidad generada en la pila de combustible de un motor de hidrógeno puede tomar dos rutas, dependiendo de las exigencias: o fluye hacia el motor eléctrico y alimenta el FCEV directamente, o carga una batería, que almacena la energía que se necesita para el motor.
Dicha batería, conocida como “Peak Power Battery”, es mucho más pequeña y, por tanto, más ligera que la de un coche totalmente eléctrico, ya que se recarga constantemente con la pila de combustible.
Al igual que otros vehículos eléctricos, los de hidrógeno también pueden recuperar la energía en el frenado, donde el motor eléctrico convierte la energía cinética en energía eléctrica, y la introduce en la batería de reserva.
Algunas ventajas
Dependiendo de la estación de carga y de la capacidad de la batería, los vehículos totalmente eléctricos necesitan actualmente entre 30 minutos y varias horas para una carga completa. En cambio, los depósitos de hidrógeno de los vehículos de pila de combustible se llenan y están listos para volver a funcionar en menos de cinco minutos. ¿La desventaja? existen muy pocas estaciones de recarga de hidrógeno en el mundo.
Por otra parte, los de hidrógeno siguen teniendo una mayor autonomía que los puramente eléctricos. Un depósito de hidrógeno lleno alcanza para unos 480 kilómetros, mientras que los de pila de combustible pueden igualarlo con baterías muy grandes, lo que supondrá un aumento tanto del peso del vehículo como de los tiempos de carga.
Por último, las pilas de combustibles de hidrógeno están diseñadas para durar toda la vida útil del vehículo, que es de unos 150.000 a 200.000 kilómetros. Una vez cumplida su vida útil, pueden desmontarse y sus materiales reciclarse.
En conclusión, la tecnología de las pilas de combustible de hidrógeno tiene el potencial de hacer posible una movilidad ecológicamente sostenible, a través del uso de fuentes de energía renovables a la hora de producir el hidrógeno utilizado, así como una ampliación de la infraestructura tecnológica para acortar las distancias de transporte.
Con información de: BMW y Energy.gov
Redacción | Antonio Vilela