• Invest In Latam
  • Latam Mobility
  • Future Energy Summit
  • Latam Green
  • Evolv X
H2 Business News
  • Inicio
  • HIDRÓGENO
  • BIOCARBURANTES
  • GAS NATURAL
  • OTROS
  • NOSOTROS
  • Contacto
No Result
View All Result
  • Inicio
  • HIDRÓGENO
  • BIOCARBURANTES
  • GAS NATURAL
  • OTROS
  • NOSOTROS
  • Contacto
No Result
View All Result
H2 Business News
No Result
View All Result

Nanotecnología: Clave para impulsar la producción de hidrógeno

2024-07-31
en HIDRÓGENO
Tiempo de lectura: 3 mins read
Hidrógeno

Investigadores del Laboratorio Nacional Lawrence Livermore (LLNL) descubrieron un nuevo mecanismo que puede aumentar la eficiencia de la producción de hidrógeno mediante la división del agua.

Esta investigación, publicada en ACS Applied Materials & Interfaces, proporciona nuevos conocimientos sobre el comportamiento de la reactividad del agua y la transferencia de protones en condiciones de confinamiento extremo, sugiriendo posibles estrategias para mejorar el rendimiento de los electrocatalizadores en la producción de hidrógeno, protegiendo al mismo tiempo el catalizador de la degradación.

Junto con la Universidad de Columbia y la Universidad de California en Irvine, los científicos del LLNL desarrollaron una nueva estrategia para mejorar el equilibrio entre actividad y durabilidad de los electrocatalizadores encapsulando el catalizador con capas ultrafinas y porosas de dióxido de titanio.

El equipo de Columbia dirigido por Daniel Esposito informó anteriormente de que los óxidos nanoporosos que cubren las nanopartículas de platino podían mejorar la durabilidad del sistema sin comprometer la actividad catalítica.

Ello va contrariamente a lo que se suele pensar: cubrir la superficie del catalizador compromete gravemente la actividad catalítica. La estructura nanoporosa también parece mejorar la selectividad al favorecer las reacciones de división del agua frente a los procesos competidores.

También te puede interesar: Bergen Engines avanza hacia un motor 100% de hidrógeno

Detalles del estudio

Los científicos del LLNL utilizaron simulaciones avanzadas de dinámica molecular (DM) con un potencial de aprendizaje automático derivado de cálculos de primeros principios, que permite explorar la superficie de energía potencial y la cinética de reacción con una precisión extraordinaria a escalas fuera del alcance de los enfoques convencionales de primeros principios.

Las simulaciones revelaron que el agua confinada en nanoporos de menos de 0,5 nanómetros muestra una reactividad y unos mecanismos de transferencia de protones significativamente alterados. En concreto, el equipo observó que el confinamiento reduce la energía de activación del transporte de protones.

«Nuestros hallazgos demuestran que en entornos extremadamente confinados, la energía de activación para la disociación del agua se reduce, lo que conduce a eventos de transferencia de protones más frecuentes y al transporte rápido de protones», dijo Hyuna Kwon, científica de materiales en el Grupo de Simulaciones Cuánticas de LLNL y en el Laboratorio de Aplicaciones Energéticas para el Futuro (LEAF).

«Este conocimiento podría allanar el camino para optimizar los óxidos porosos para mejorar la eficiencia de los sistemas de producción de hidrógeno, mediante el ajuste de la porosidad y la química de la superficie de los óxidos», agregó.

Etiquetas: Hidrógeno verdeInvestigaciónTecnología
Noticia Anterior

Alemania aprueba estrategia de importación de hidrógeno y derivados

Siguiente Noticia

Shipbreaking Platform: Brasil se convertirá en centro sostenible de reciclado de buques

Antonio Vilela

Antonio Vilela

Periodista especializado en hidrógeno y biocombustibles.

Más Noticias

Hidrógeno
HIDRÓGENO

México inaugura su primera planta de hidrógeno verde

2025-10-15
Hidrobinisa
HIDRÓGENO

Hidrobinisa: la apuesta mexicana por un transporte urbano con hidrógeno, sol y litio

2025-10-09
Hidrógeno
HIDRÓGENO

El mercado global de hidrógeno de bajo carbono enfrenta una reducción del 25% en su cartera de proyectos

2025-10-07
GIZ
HIDRÓGENO

GIZ y Wilo invierten en plantas modulares de hidrógeno en Chile y Brasil

2025-10-02
Hidrógeno
HIDRÓGENO

América Latina supera los 200 proyectos de hidrógeno verde, pero solo 1% recibe inversión definitiva

2025-09-25
Chile
HIDRÓGENO

Reporte: más del 70% de proyectos de hidrógeno verde aún sin tramitar en el SEIA de Chile

2025-09-23
Siguiente Noticia
Brasil

Shipbreaking Platform: Brasil se convertirá en centro sostenible de reciclado de buques

FS Bioenergia
OTROS

FS Bioenergia anuncia la primera venta futura de créditos de remoción de carbono en Brasil

2025-09-30
Hidrógeno
HIDRÓGENO

América Latina supera los 200 proyectos de hidrógeno verde, pero solo 1% recibe inversión definitiva

2025-09-25
Chile
HIDRÓGENO

Reporte: más del 70% de proyectos de hidrógeno verde aún sin tramitar en el SEIA de Chile

2025-09-23
México
HIDRÓGENO

La Secretaría de Energía de México impulsa el Plan Nacional de Hidrógeno Renovable con apoyo del BID

2025-09-18
México
BIOCARBURANTES

Grupo ASA anuncia inversión récord en biocombustibles para el sur de México

2025-09-16
Uruguay
HIDRÓGENO

Arranca el estudio integral que definirá lineamientos ambientales del hidrógeno verde en Uruguay

2025-09-11
México
HIDRÓGENO

Transition Industries y Bonatti impulsan exportación de metanol verde en Sinaloa, México

2025-09-10
Brasil
HIDRÓGENO

Brasil inaugura primer generador de hidrógeno verde en América Latina

2025-09-09
Información

H2 Business News es el principal recurso y comunidad hispanohablante para ayudarlo a navegar la nueva economía de los combustibles limpios, incluyendo el Hidrógeno, los Biocarburantes y el Gas Natural. 

Linkedin Whatsapp Instagram Twitter-square Youtube Facebook
Navegación
  • Inicio
  • Contacto
Categorías
  • Hidrógeno
  • Biocarburantes
  • Gas Natural

© 2022 Copyright H2 Business News by Invest in Latam. Diseño web: Imagina la web

No Result
View All Result
  • Inicio
  • HIDRÓGENO
  • BIOCARBURANTES
  • GAS NATURAL
  • OTROS
  • NOSOTROS
  • Contacto

© 2021 Copyright Latam Green by Invest in Latam. Diseño web Imagina la web

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.